Twisting and bending: the functional role of salamander lateral hypaxial musculature during locomotion.
نویسندگان
چکیده
The function of the lateral hypaxial muscles during locomotion in tetrapods is controversial. Currently, there are two hypotheses of lateral hypaxial muscle function. The first, supported by electromyographic (EMG) data from a lizard (Iguana iguana) and a salamander (Dicamptodon ensatus), suggests that hypaxial muscles function to bend the body during swimming and to resist long-axis torsion during walking. The second, supported by EMG data from lizards during relatively high-speed locomotion, suggests that these muscles function primarily to bend the body during locomotion, not to resist torsional forces. To determine whether the results from D. ensatus hold for another salamander, we recorded lateral hypaxial muscle EMGs synchronized with body and limb kinematics in the tiger salamander Ambystoma tigrinum. In agreement with results from aquatic locomotion in D. ensatus, all four layers of lateral hypaxial musculature were found to show synchronous EMG activity during swimming in A. tigrinum. Our findings for terrestrial locomotion also agree with previous results from D. ensatus and support the torsion resistance hypothesis for terrestrial locomotion. We observed asynchronous EMG bursts of relatively high intensity in the lateral and medial pairs of hypaxial muscles during walking in tiger salamanders (we call these 'alpha-bursts'). We infer from this pattern that the more lateral two layers of oblique hypaxial musculature, Mm. obliquus externus superficialis (OES) and obliquus externus profundus (OEP), are active on the side towards which the trunk is bending, while the more medial two layers, Mm. obliquus internus (OI) and transversus abdominis (TA), are active on the opposite side. This result is consistent with the hypothesis proposed for D. ensatus that the OES and OEP generate torsional moments to counteract ground reaction forces generated by forelimb support, while the OI and TA generate torsional moments to counteract ground reaction forces from hindlimb support. However, unlike the EMG pattern reported for D. ensatus, a second, lower-intensity burst of EMG activity ('beta-burst') was sometimes recorded from the lateral hypaxial muscles in A. tigrinum. As seen in other muscle systems, these beta-bursts of hypaxial muscle coactivation may function to provide fine motor control during locomotion. The presence of asynchronous, relatively high-intensity alpha-bursts indicates that the lateral hypaxial muscles generate torsional moments during terrestrial locomotion, but it is possible that the balance of forces from both alpha- and beta-bursts may allow the lateral hypaxial muscles to contribute to lateral bending of the body as well.
منابع مشابه
Axial muscle function during lizard locomotion
It was recently reported that the epaxial muscles of a lizard, Varanus salvator, function to stabilize the trunk during locomotion, and it was suggested that this stabilizing role may be a shared derived feature of amniotes. This result was unexpected because it had previously been assumed that the epaxial muscles of lizards function to produce lateral bending during locomotion and that only in...
متن کاملFunctional and Morphological Variety in Trunk Muscles of Urodela
Trunk musculature in Urodela species varies by habitat. In this study, trunk musculature was examined in five species of adult salamanders representing three different habitats: aquatic species, Amphiuma tridactylum and Necturus maculosus; semi-aquatic species, Cynops pyrrhogaster; terrestrial species, Hynobius nigrescens and Ambystoma tigrinum. More terrestrial species have heavier dorsal and ...
متن کاملLocomotion pattern and trunk musculoskeletal architecture among Urodela
We comparatively examined the trunk musculature and prezygapophyseal angle of mid-trunk vertebra in eight urodele species with different locomotive modes (aquatic Siren intermedia, Amphiuma tridactylum, Necturus maculosus and Andrias japonicus; semi-aquatic Cynops pyrrhogaster, Cynops ensicauda; and terrestrial Hynobius nigrescens, Hynobius lichenatus and Ambystoma tigrinum). We found that the ...
متن کاملMorphology and mechanics of myosepta in a swimming salamander (Siren lacertina).
In contrast to the complex, three-dimensional shape of myomeres in teleost fishes, the lateral hypaxial muscles of salamanders are nearly planar and their myosepta run in a roughly straight line from mid-lateral to mid-ventral. We used this relatively simple system as the basis for a mathematical model of segmented musculature. Model results highlight the importance of the mechanics of myosepta...
متن کاملMorphological variation of hypaxial musculature in salamanders (Lissamphibia: caudata).
Despite the acknowledged importance of the locomotory and respiratory functions associated with hypaxial musculature in salamanders, variation in gross morphology of this musculature has not been documented or evaluated within a phylogenetic or ecological context. In this study, we characterize and quantify the morphological variation of lateral hypaxial muscles using phylogenetically and ecolo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 204 Pt 11 شماره
صفحات -
تاریخ انتشار 2001